Molecularly imprinted quartz crystal microbalance sensor based on poly(o-aminothiophenol) membrane and Au nanoparticles for ractopamine determination.

نویسندگان

  • Ling-Jie Kong
  • Ming-Fei Pan
  • Guo-Zhen Fang
  • Xin-lei He
  • Yu-kun Yang
  • Jie Dai
  • Shuo Wang
چکیده

A molecularly imprinted quartz crystal microbalance (QCM) sensor for ractopamine (RAC) detection was developed by electrodepositing a poly-o-aminothiophenol membrane on an Au electrode surface modified by self-assembled Au nanoparticles (AuNPs). The modified electrodes were characterized by cyclic voltammetry, electrochemical impedance spectroscopy and scanning electron microscopy. This molecularly imprinted QCM sensor showed good frequency response in RAC binding measurements and the introduction of AuNPs demonstrated performance improvements. Frequency shifts were found to be proportional to concentration of RAC in the range of 2.5×10(-6) to 1.5×10(-4) mol L(-1) with a detection limit of 1.17×10(-6) mol L(-1) (S/N=3). The sensor showed a good selective affinity for RAC (selectivity coefficient >3) compared with similar molecules and good reproducibility and long-term stability. This research has combined the advantages of high specific surface area of AuNPs, high selectivity from molecularly imprinted electrodeposited membrane and high sensitivity from quartz crystal microgravimetry. In addition, the modified electrode sensor was successfully applied to determine RAC residues in spiked swine feed samples with satisfactory recoveries ranging from 87.7 to 95.2%.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of QCM sensor surfaces coated with molecularly imprinted nanoparticles.

Molecularly imprinted polymers (MIPs) are gaining great interest as tailor-made recognition materials for the development of biomimetic sensors. Various approaches have been adopted to interface MIPs with different transducers, including the use of pre-made imprinted particles and the in situ preparation of thin polymer layers directly on transducer surfaces. In this work we functionalized quar...

متن کامل

Surface Molecularly Imprinted Polymer Film with Poly(p-aminothiophenol) Outer Layer Coated on Gold Nanoparticles Inner Layer for Highly Sensitive and Selective Sensing Paraoxon

This paper presents the fabrication of a molecularly imprinted, polymer-based disposable electrochemical sensor for paraoxon (PO) determination. The sensor was based on a screen-printed carbon electrode (SPCE) modified with a surface molecularly imprinted poly (p-aminothiophenol) (PATP)/gold nanoparticles (AuNPs) composite film, which consisted of a PATP outer layer and an AuNPs inner layer. We...

متن کامل

Sensor Array Based on Molecularly Imprinted Polymers for Simultaneous Detection of Lipoproteins

Herein we report a sensor array based on quartz crystal microbalance (QCM) to simultaneously detect two biomarkers, namely low-density lipoprotein (LDL), and high-density lipoprotein (HDL). Selective recognition takes place through molecularly imprinted polymers (MIP) with both MIPs and corresponding non-imprinted polymer (NIP) as reference electrode. Sensor array performs highly appreciably in...

متن کامل

QCM sensing of bisphenol A using molecularly imprinted hydrogelconducting polymer matrix

Molecular imprinting is a well-known fabrication technique for designing artificial receptors and molecular sensors. The technique resembles a lock and key mechanism and utilizes shape-complementary cavities within polymeric materials as molecular recognition sites for various relevant molecules. In this study, we prepared molecularly imprinted polypeptide gel layers based on cyclodextrin-modif...

متن کامل

Hierarchical Thin Film Architectures for Enhanced Sensor Performance: Liquid Crystal-Mediated Electrochemical Synthesis of Nanostructured Imprinted Polymer Films for the Selective Recognition of Bupivacaine

Nanostructured bupivacaine-selective molecularly imprinted 3-aminophenylboronic acid-p-phenylenediamine co-polymer (MIP) films have been prepared on gold-coated quartz (Au/quartz) resonators by electrochemical synthesis under cyclic voltammetric conditions in a liquid crystalline (LC) medium (triton X-100/water). Films prepared in water and in the absence of template were used for control studi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biosensors & bioelectronics

دوره 51  شماره 

صفحات  -

تاریخ انتشار 2014